Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge

نویسندگان

  • R. L. Liu
  • M. F. Hurley
  • A. Kvryan
  • G. Williams
  • J. R. Scully
  • N. Birbilis
چکیده

The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of Adhesion Properties, Corrosion Resistance and Cathodic Disbonding of Mild Steel-Epoxy Coating Systems By Vanadium Conversion Coating

In this study, vanadium conversion coating(VCC) was deposited on the surface of soft-cast steel (St-37).  A thermoset coating was enforced on the VCC and blank substrates. The surface was characterized by field emission scanning electron microscope (FE-SEM), elemental mapping of energy dispersive X-ray (EDX) and atomic force microscopy (AFM). The adhesion strength...

متن کامل

Microstructure, in Vitro Corrosion and Mechanical Properties of porous Magnesium-Zinc Nanocomposite Scaffolds

Due to good biocompatibility, corrosion and mechanical properties, magnesium (Mg) is considered promising degradable material for orthopedic applications. In this work, Mg-MgZnx (x= 1, 2, 3 and 4) nanocomposites scaffolds with different porosities were synthesized via powder metallurgy method. The microstructure, composition, in vitro corrosion and mechanical properties of porous magnesium-zinc...

متن کامل

Comparison of Electrochemical Methods for the Evaluation of Cast AZ91 Magnesium Alloy

Linear polarization is a potentiodynamic method used for electrochemical characterization of materials. Obtained values of corrosion potential and corrosion current density offer information about material behavior in corrosion environments from the thermodynamic and kinetic points of view, respectively. The present study offers a comparison of applications of the linear polarization method (fr...

متن کامل

Cathodic electrodeposion of nano Titania along the epoxy based coating and evaluation of its anticorrosion properties

Effect of nano TiO2 particles on the corrosion properties of an epoxy based coatings was investigated. Coatings and nano Titania were applied on standard phosphated steel panels by cathodic electrodeposition simultaneously. The coated panels were immerged in 3.5 NaCl solution for 2880 hours 120 days. The SEM and EIS technique were used to investigate the electrodeposion of nano Titania particle...

متن کامل

Evaluation of Heat Treatments and Their Effects on the Corrosion Behavior of TiAlON Coatings Prepared by Cathodic Arc Evaporation on D3 Tool Steel

A series of TiAlON coatings were synthesized in a gaseous mixture of argon, nitrogen and oxygen by cathodic arc evaporation method using a Ti–Al mosaic target. Oxidation of coatings was carried out by heating the coated samples at the temperatures of 500, 600, 700, and 800°C for 1 h in air atmosphere. It was found that heat treatment changed the microstructure and composition of the coating. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016